Modified quantum trajectory dynamics using a mixed wave function representation.
نویسندگان
چکیده
Dynamics of quantum trajectories provides an efficient framework for description of various quantum effects in large systems, but it is unstable near the wave function density nodes where the quantum potential becomes singular. A mixed coordinate space/polar representation of the wave function is used to circumvent this problem. The resulting modified trajectory dynamics associated with the polar representation is nonsingular and smooth. The interference structure and the nodes of the wave function density are described, in principle, exactly in the coordinate representation. The approximate version of this approach is consistent with the semiclassical linearized quantum force method [S. Garashchuk and V. A. Rassolov, J. Chem. Phys. 120, 1181 (2004)]. This approach is exact for general wave functions with the density nodes in a locally quadratic potential.
منابع مشابه
Quantum trajectory dynamics in imaginary time with the momentum-dependent quantum potential.
The quantum trajectory dynamics is extended to the wave function evolution in imaginary time. For a nodeless wave function a simple exponential form leads to the classical-like equations of motion of trajectories, representing the wave function, in the presence of the momentum-dependent quantum potential in addition to the external potential. For a Gaussian wave function this quantum potential ...
متن کاملSemiclassical Nonadiabatic Dynamics Based on Quantum Trajectories for the O(P-3,D-1)+H-2 System
The O͑ 3 P , 1 D͒ +H 2 → OH + H reaction is studied using trajectory dynamics within the approximate quantum potential approach. Calculations of the wave-packet reaction probabilities are performed for four coupled electronic states for total angular momentum J = 0 using a mixed coordinate/polar representation of the wave function. Semiclassical dynamics is based on a single set of trajectories e...
متن کاملSemiclassical nonadiabatic dynamics using a mixed wave-function representation.
Nonadiabatic effects in quantum dynamics are described using a mixed polar/coordinate space representation of the wave function. The polar part evolves on dynamically determined potential surfaces that have diabatic and adiabatic potentials as limiting cases of weak localized and strong extended diabatic couplings. The coordinate space part, generalized to a matrix form, describes transitions b...
متن کاملQuantum-Classical Nonadiabatic Dynamics: Coupled- vs Independent-Trajectory Methods.
Trajectory-based mixed quantum-classical approaches to coupled electron-nuclear dynamics suffer from well-studied problems such as the lack of (or incorrect account for) decoherence in the trajectory surface hopping method and the inability of reproducing the spatial splitting of a nuclear wave packet in Ehrenfest-like dynamics. In the context of electronic nonadiabatic processes, these problem...
متن کاملSimulation of quantum processes using entangled trajectory molecular dynamics
In this paper, we describe a new method for simulating quantum processes using classical-like molecular dynamics. The approach is based on solving the quantum Liouville equation in the Wigner representation using ensembles of classical trajectories in phase space. The nonlocality of quantum mechanics is incorporated in the trajectory representation as nonclassical interactions between the membe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 121 18 شماره
صفحات -
تاریخ انتشار 2004